Copied to
clipboard

G = C5×C23.38C23order 320 = 26·5

Direct product of C5 and C23.38C23

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C5×C23.38C23, C10.1112- 1+4, C4⋊Q89C10, C4.17(D4×C10), C22⋊Q85C10, C4.4D47C10, (C2×C20).348D4, C20.324(C2×D4), (C22×Q8)⋊5C10, C42.36(C2×C10), C22.22(D4×C10), C42⋊C211C10, (C2×C10).356C24, (C2×C20).665C23, (C4×C20).277C22, C10.191(C22×D4), C22.D43C10, C2.3(C5×2- 1+4), (D4×C10).320C22, C22.30(C23×C10), C23.10(C22×C10), (Q8×C10).270C22, (C22×C20).446C22, (C22×C10).261C23, (C5×C4⋊Q8)⋊30C2, (Q8×C2×C10)⋊17C2, C2.15(D4×C2×C10), (C2×C4).49(C5×D4), C4⋊C4.27(C2×C10), (C5×C22⋊Q8)⋊32C2, (C2×C4○D4).10C10, (C10×C4○D4).24C2, (C2×D4).65(C2×C10), (C5×C4.4D4)⋊27C2, (C2×C10).418(C2×D4), C22⋊C4.1(C2×C10), (C2×Q8).57(C2×C10), (C5×C42⋊C2)⋊32C2, (C5×C4⋊C4).247C22, (C2×C4).23(C22×C10), (C22×C4).57(C2×C10), (C5×C22.D4)⋊22C2, (C5×C22⋊C4).83C22, SmallGroup(320,1538)

Series: Derived Chief Lower central Upper central

C1C22 — C5×C23.38C23
C1C2C22C2×C10C22×C10D4×C10C5×C4.4D4 — C5×C23.38C23
C1C22 — C5×C23.38C23
C1C2×C10 — C5×C23.38C23

Generators and relations for C5×C23.38C23
 G = < a,b,c,d,e,f,g | a5=b2=c2=d2=e2=1, f2=g2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, ebe=bc=cb, bd=db, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, gfg-1=cf=fc, cg=gc, geg-1=de=ed, df=fd, dg=gd >

Subgroups: 386 in 270 conjugacy classes, 162 normal (26 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C10, C10, C10, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C20, C20, C2×C10, C2×C10, C2×C10, C42⋊C2, C22⋊Q8, C22.D4, C4.4D4, C4⋊Q8, C22×Q8, C2×C4○D4, C2×C20, C2×C20, C2×C20, C5×D4, C5×Q8, C22×C10, C22×C10, C23.38C23, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C22×C20, C22×C20, D4×C10, D4×C10, Q8×C10, Q8×C10, Q8×C10, C5×C4○D4, C5×C42⋊C2, C5×C22⋊Q8, C5×C22.D4, C5×C4.4D4, C5×C4⋊Q8, Q8×C2×C10, C10×C4○D4, C5×C23.38C23
Quotients: C1, C2, C22, C5, D4, C23, C10, C2×D4, C24, C2×C10, C22×D4, 2- 1+4, C5×D4, C22×C10, C23.38C23, D4×C10, C23×C10, D4×C2×C10, C5×2- 1+4, C5×C23.38C23

Smallest permutation representation of C5×C23.38C23
On 160 points
Generators in S160
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 36)(2 37)(3 38)(4 39)(5 40)(6 150)(7 146)(8 147)(9 148)(10 149)(11 155)(12 151)(13 152)(14 153)(15 154)(16 143)(17 144)(18 145)(19 141)(20 142)(21 41)(22 42)(23 43)(24 44)(25 45)(26 46)(27 47)(28 48)(29 49)(30 50)(31 51)(32 52)(33 53)(34 54)(35 55)(56 76)(57 77)(58 78)(59 79)(60 80)(61 81)(62 82)(63 83)(64 84)(65 85)(66 86)(67 87)(68 88)(69 89)(70 90)(71 91)(72 92)(73 93)(74 94)(75 95)(96 116)(97 117)(98 118)(99 119)(100 120)(101 121)(102 122)(103 123)(104 124)(105 125)(106 126)(107 127)(108 128)(109 129)(110 130)(111 131)(112 132)(113 133)(114 134)(115 135)(136 156)(137 157)(138 158)(139 159)(140 160)
(1 35)(2 31)(3 32)(4 33)(5 34)(6 16)(7 17)(8 18)(9 19)(10 20)(11 156)(12 157)(13 158)(14 159)(15 160)(21 28)(22 29)(23 30)(24 26)(25 27)(36 55)(37 51)(38 52)(39 53)(40 54)(41 48)(42 49)(43 50)(44 46)(45 47)(56 75)(57 71)(58 72)(59 73)(60 74)(61 68)(62 69)(63 70)(64 66)(65 67)(76 95)(77 91)(78 92)(79 93)(80 94)(81 88)(82 89)(83 90)(84 86)(85 87)(96 115)(97 111)(98 112)(99 113)(100 114)(101 108)(102 109)(103 110)(104 106)(105 107)(116 135)(117 131)(118 132)(119 133)(120 134)(121 128)(122 129)(123 130)(124 126)(125 127)(136 155)(137 151)(138 152)(139 153)(140 154)(141 148)(142 149)(143 150)(144 146)(145 147)
(1 30)(2 26)(3 27)(4 28)(5 29)(6 156)(7 157)(8 158)(9 159)(10 160)(11 16)(12 17)(13 18)(14 19)(15 20)(21 33)(22 34)(23 35)(24 31)(25 32)(36 50)(37 46)(38 47)(39 48)(40 49)(41 53)(42 54)(43 55)(44 51)(45 52)(56 70)(57 66)(58 67)(59 68)(60 69)(61 73)(62 74)(63 75)(64 71)(65 72)(76 90)(77 86)(78 87)(79 88)(80 89)(81 93)(82 94)(83 95)(84 91)(85 92)(96 110)(97 106)(98 107)(99 108)(100 109)(101 113)(102 114)(103 115)(104 111)(105 112)(116 130)(117 126)(118 127)(119 128)(120 129)(121 133)(122 134)(123 135)(124 131)(125 132)(136 150)(137 146)(138 147)(139 148)(140 149)(141 153)(142 154)(143 155)(144 151)(145 152)
(1 96)(2 97)(3 98)(4 99)(5 100)(6 76)(7 77)(8 78)(9 79)(10 80)(11 83)(12 84)(13 85)(14 81)(15 82)(16 95)(17 91)(18 92)(19 93)(20 94)(21 101)(22 102)(23 103)(24 104)(25 105)(26 106)(27 107)(28 108)(29 109)(30 110)(31 111)(32 112)(33 113)(34 114)(35 115)(36 135)(37 131)(38 132)(39 133)(40 134)(41 128)(42 129)(43 130)(44 126)(45 127)(46 124)(47 125)(48 121)(49 122)(50 123)(51 117)(52 118)(53 119)(54 120)(55 116)(56 143)(57 144)(58 145)(59 141)(60 142)(61 139)(62 140)(63 136)(64 137)(65 138)(66 151)(67 152)(68 153)(69 154)(70 155)(71 146)(72 147)(73 148)(74 149)(75 150)(86 157)(87 158)(88 159)(89 160)(90 156)
(1 115 35 96)(2 111 31 97)(3 112 32 98)(4 113 33 99)(5 114 34 100)(6 90 16 83)(7 86 17 84)(8 87 18 85)(9 88 19 81)(10 89 20 82)(11 95 156 76)(12 91 157 77)(13 92 158 78)(14 93 159 79)(15 94 160 80)(21 108 28 101)(22 109 29 102)(23 110 30 103)(24 106 26 104)(25 107 27 105)(36 135 55 116)(37 131 51 117)(38 132 52 118)(39 133 53 119)(40 134 54 120)(41 128 48 121)(42 129 49 122)(43 130 50 123)(44 126 46 124)(45 127 47 125)(56 155 75 136)(57 151 71 137)(58 152 72 138)(59 153 73 139)(60 154 74 140)(61 148 68 141)(62 149 69 142)(63 150 70 143)(64 146 66 144)(65 147 67 145)
(1 75 35 56)(2 71 31 57)(3 72 32 58)(4 73 33 59)(5 74 34 60)(6 123 16 130)(7 124 17 126)(8 125 18 127)(9 121 19 128)(10 122 20 129)(11 116 156 135)(12 117 157 131)(13 118 158 132)(14 119 159 133)(15 120 160 134)(21 68 28 61)(22 69 29 62)(23 70 30 63)(24 66 26 64)(25 67 27 65)(36 95 55 76)(37 91 51 77)(38 92 52 78)(39 93 53 79)(40 94 54 80)(41 88 48 81)(42 89 49 82)(43 90 50 83)(44 86 46 84)(45 87 47 85)(96 136 115 155)(97 137 111 151)(98 138 112 152)(99 139 113 153)(100 140 114 154)(101 141 108 148)(102 142 109 149)(103 143 110 150)(104 144 106 146)(105 145 107 147)

G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,36)(2,37)(3,38)(4,39)(5,40)(6,150)(7,146)(8,147)(9,148)(10,149)(11,155)(12,151)(13,152)(14,153)(15,154)(16,143)(17,144)(18,145)(19,141)(20,142)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(31,51)(32,52)(33,53)(34,54)(35,55)(56,76)(57,77)(58,78)(59,79)(60,80)(61,81)(62,82)(63,83)(64,84)(65,85)(66,86)(67,87)(68,88)(69,89)(70,90)(71,91)(72,92)(73,93)(74,94)(75,95)(96,116)(97,117)(98,118)(99,119)(100,120)(101,121)(102,122)(103,123)(104,124)(105,125)(106,126)(107,127)(108,128)(109,129)(110,130)(111,131)(112,132)(113,133)(114,134)(115,135)(136,156)(137,157)(138,158)(139,159)(140,160), (1,35)(2,31)(3,32)(4,33)(5,34)(6,16)(7,17)(8,18)(9,19)(10,20)(11,156)(12,157)(13,158)(14,159)(15,160)(21,28)(22,29)(23,30)(24,26)(25,27)(36,55)(37,51)(38,52)(39,53)(40,54)(41,48)(42,49)(43,50)(44,46)(45,47)(56,75)(57,71)(58,72)(59,73)(60,74)(61,68)(62,69)(63,70)(64,66)(65,67)(76,95)(77,91)(78,92)(79,93)(80,94)(81,88)(82,89)(83,90)(84,86)(85,87)(96,115)(97,111)(98,112)(99,113)(100,114)(101,108)(102,109)(103,110)(104,106)(105,107)(116,135)(117,131)(118,132)(119,133)(120,134)(121,128)(122,129)(123,130)(124,126)(125,127)(136,155)(137,151)(138,152)(139,153)(140,154)(141,148)(142,149)(143,150)(144,146)(145,147), (1,30)(2,26)(3,27)(4,28)(5,29)(6,156)(7,157)(8,158)(9,159)(10,160)(11,16)(12,17)(13,18)(14,19)(15,20)(21,33)(22,34)(23,35)(24,31)(25,32)(36,50)(37,46)(38,47)(39,48)(40,49)(41,53)(42,54)(43,55)(44,51)(45,52)(56,70)(57,66)(58,67)(59,68)(60,69)(61,73)(62,74)(63,75)(64,71)(65,72)(76,90)(77,86)(78,87)(79,88)(80,89)(81,93)(82,94)(83,95)(84,91)(85,92)(96,110)(97,106)(98,107)(99,108)(100,109)(101,113)(102,114)(103,115)(104,111)(105,112)(116,130)(117,126)(118,127)(119,128)(120,129)(121,133)(122,134)(123,135)(124,131)(125,132)(136,150)(137,146)(138,147)(139,148)(140,149)(141,153)(142,154)(143,155)(144,151)(145,152), (1,96)(2,97)(3,98)(4,99)(5,100)(6,76)(7,77)(8,78)(9,79)(10,80)(11,83)(12,84)(13,85)(14,81)(15,82)(16,95)(17,91)(18,92)(19,93)(20,94)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,109)(30,110)(31,111)(32,112)(33,113)(34,114)(35,115)(36,135)(37,131)(38,132)(39,133)(40,134)(41,128)(42,129)(43,130)(44,126)(45,127)(46,124)(47,125)(48,121)(49,122)(50,123)(51,117)(52,118)(53,119)(54,120)(55,116)(56,143)(57,144)(58,145)(59,141)(60,142)(61,139)(62,140)(63,136)(64,137)(65,138)(66,151)(67,152)(68,153)(69,154)(70,155)(71,146)(72,147)(73,148)(74,149)(75,150)(86,157)(87,158)(88,159)(89,160)(90,156), (1,115,35,96)(2,111,31,97)(3,112,32,98)(4,113,33,99)(5,114,34,100)(6,90,16,83)(7,86,17,84)(8,87,18,85)(9,88,19,81)(10,89,20,82)(11,95,156,76)(12,91,157,77)(13,92,158,78)(14,93,159,79)(15,94,160,80)(21,108,28,101)(22,109,29,102)(23,110,30,103)(24,106,26,104)(25,107,27,105)(36,135,55,116)(37,131,51,117)(38,132,52,118)(39,133,53,119)(40,134,54,120)(41,128,48,121)(42,129,49,122)(43,130,50,123)(44,126,46,124)(45,127,47,125)(56,155,75,136)(57,151,71,137)(58,152,72,138)(59,153,73,139)(60,154,74,140)(61,148,68,141)(62,149,69,142)(63,150,70,143)(64,146,66,144)(65,147,67,145), (1,75,35,56)(2,71,31,57)(3,72,32,58)(4,73,33,59)(5,74,34,60)(6,123,16,130)(7,124,17,126)(8,125,18,127)(9,121,19,128)(10,122,20,129)(11,116,156,135)(12,117,157,131)(13,118,158,132)(14,119,159,133)(15,120,160,134)(21,68,28,61)(22,69,29,62)(23,70,30,63)(24,66,26,64)(25,67,27,65)(36,95,55,76)(37,91,51,77)(38,92,52,78)(39,93,53,79)(40,94,54,80)(41,88,48,81)(42,89,49,82)(43,90,50,83)(44,86,46,84)(45,87,47,85)(96,136,115,155)(97,137,111,151)(98,138,112,152)(99,139,113,153)(100,140,114,154)(101,141,108,148)(102,142,109,149)(103,143,110,150)(104,144,106,146)(105,145,107,147)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,36)(2,37)(3,38)(4,39)(5,40)(6,150)(7,146)(8,147)(9,148)(10,149)(11,155)(12,151)(13,152)(14,153)(15,154)(16,143)(17,144)(18,145)(19,141)(20,142)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(31,51)(32,52)(33,53)(34,54)(35,55)(56,76)(57,77)(58,78)(59,79)(60,80)(61,81)(62,82)(63,83)(64,84)(65,85)(66,86)(67,87)(68,88)(69,89)(70,90)(71,91)(72,92)(73,93)(74,94)(75,95)(96,116)(97,117)(98,118)(99,119)(100,120)(101,121)(102,122)(103,123)(104,124)(105,125)(106,126)(107,127)(108,128)(109,129)(110,130)(111,131)(112,132)(113,133)(114,134)(115,135)(136,156)(137,157)(138,158)(139,159)(140,160), (1,35)(2,31)(3,32)(4,33)(5,34)(6,16)(7,17)(8,18)(9,19)(10,20)(11,156)(12,157)(13,158)(14,159)(15,160)(21,28)(22,29)(23,30)(24,26)(25,27)(36,55)(37,51)(38,52)(39,53)(40,54)(41,48)(42,49)(43,50)(44,46)(45,47)(56,75)(57,71)(58,72)(59,73)(60,74)(61,68)(62,69)(63,70)(64,66)(65,67)(76,95)(77,91)(78,92)(79,93)(80,94)(81,88)(82,89)(83,90)(84,86)(85,87)(96,115)(97,111)(98,112)(99,113)(100,114)(101,108)(102,109)(103,110)(104,106)(105,107)(116,135)(117,131)(118,132)(119,133)(120,134)(121,128)(122,129)(123,130)(124,126)(125,127)(136,155)(137,151)(138,152)(139,153)(140,154)(141,148)(142,149)(143,150)(144,146)(145,147), (1,30)(2,26)(3,27)(4,28)(5,29)(6,156)(7,157)(8,158)(9,159)(10,160)(11,16)(12,17)(13,18)(14,19)(15,20)(21,33)(22,34)(23,35)(24,31)(25,32)(36,50)(37,46)(38,47)(39,48)(40,49)(41,53)(42,54)(43,55)(44,51)(45,52)(56,70)(57,66)(58,67)(59,68)(60,69)(61,73)(62,74)(63,75)(64,71)(65,72)(76,90)(77,86)(78,87)(79,88)(80,89)(81,93)(82,94)(83,95)(84,91)(85,92)(96,110)(97,106)(98,107)(99,108)(100,109)(101,113)(102,114)(103,115)(104,111)(105,112)(116,130)(117,126)(118,127)(119,128)(120,129)(121,133)(122,134)(123,135)(124,131)(125,132)(136,150)(137,146)(138,147)(139,148)(140,149)(141,153)(142,154)(143,155)(144,151)(145,152), (1,96)(2,97)(3,98)(4,99)(5,100)(6,76)(7,77)(8,78)(9,79)(10,80)(11,83)(12,84)(13,85)(14,81)(15,82)(16,95)(17,91)(18,92)(19,93)(20,94)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,109)(30,110)(31,111)(32,112)(33,113)(34,114)(35,115)(36,135)(37,131)(38,132)(39,133)(40,134)(41,128)(42,129)(43,130)(44,126)(45,127)(46,124)(47,125)(48,121)(49,122)(50,123)(51,117)(52,118)(53,119)(54,120)(55,116)(56,143)(57,144)(58,145)(59,141)(60,142)(61,139)(62,140)(63,136)(64,137)(65,138)(66,151)(67,152)(68,153)(69,154)(70,155)(71,146)(72,147)(73,148)(74,149)(75,150)(86,157)(87,158)(88,159)(89,160)(90,156), (1,115,35,96)(2,111,31,97)(3,112,32,98)(4,113,33,99)(5,114,34,100)(6,90,16,83)(7,86,17,84)(8,87,18,85)(9,88,19,81)(10,89,20,82)(11,95,156,76)(12,91,157,77)(13,92,158,78)(14,93,159,79)(15,94,160,80)(21,108,28,101)(22,109,29,102)(23,110,30,103)(24,106,26,104)(25,107,27,105)(36,135,55,116)(37,131,51,117)(38,132,52,118)(39,133,53,119)(40,134,54,120)(41,128,48,121)(42,129,49,122)(43,130,50,123)(44,126,46,124)(45,127,47,125)(56,155,75,136)(57,151,71,137)(58,152,72,138)(59,153,73,139)(60,154,74,140)(61,148,68,141)(62,149,69,142)(63,150,70,143)(64,146,66,144)(65,147,67,145), (1,75,35,56)(2,71,31,57)(3,72,32,58)(4,73,33,59)(5,74,34,60)(6,123,16,130)(7,124,17,126)(8,125,18,127)(9,121,19,128)(10,122,20,129)(11,116,156,135)(12,117,157,131)(13,118,158,132)(14,119,159,133)(15,120,160,134)(21,68,28,61)(22,69,29,62)(23,70,30,63)(24,66,26,64)(25,67,27,65)(36,95,55,76)(37,91,51,77)(38,92,52,78)(39,93,53,79)(40,94,54,80)(41,88,48,81)(42,89,49,82)(43,90,50,83)(44,86,46,84)(45,87,47,85)(96,136,115,155)(97,137,111,151)(98,138,112,152)(99,139,113,153)(100,140,114,154)(101,141,108,148)(102,142,109,149)(103,143,110,150)(104,144,106,146)(105,145,107,147) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,36),(2,37),(3,38),(4,39),(5,40),(6,150),(7,146),(8,147),(9,148),(10,149),(11,155),(12,151),(13,152),(14,153),(15,154),(16,143),(17,144),(18,145),(19,141),(20,142),(21,41),(22,42),(23,43),(24,44),(25,45),(26,46),(27,47),(28,48),(29,49),(30,50),(31,51),(32,52),(33,53),(34,54),(35,55),(56,76),(57,77),(58,78),(59,79),(60,80),(61,81),(62,82),(63,83),(64,84),(65,85),(66,86),(67,87),(68,88),(69,89),(70,90),(71,91),(72,92),(73,93),(74,94),(75,95),(96,116),(97,117),(98,118),(99,119),(100,120),(101,121),(102,122),(103,123),(104,124),(105,125),(106,126),(107,127),(108,128),(109,129),(110,130),(111,131),(112,132),(113,133),(114,134),(115,135),(136,156),(137,157),(138,158),(139,159),(140,160)], [(1,35),(2,31),(3,32),(4,33),(5,34),(6,16),(7,17),(8,18),(9,19),(10,20),(11,156),(12,157),(13,158),(14,159),(15,160),(21,28),(22,29),(23,30),(24,26),(25,27),(36,55),(37,51),(38,52),(39,53),(40,54),(41,48),(42,49),(43,50),(44,46),(45,47),(56,75),(57,71),(58,72),(59,73),(60,74),(61,68),(62,69),(63,70),(64,66),(65,67),(76,95),(77,91),(78,92),(79,93),(80,94),(81,88),(82,89),(83,90),(84,86),(85,87),(96,115),(97,111),(98,112),(99,113),(100,114),(101,108),(102,109),(103,110),(104,106),(105,107),(116,135),(117,131),(118,132),(119,133),(120,134),(121,128),(122,129),(123,130),(124,126),(125,127),(136,155),(137,151),(138,152),(139,153),(140,154),(141,148),(142,149),(143,150),(144,146),(145,147)], [(1,30),(2,26),(3,27),(4,28),(5,29),(6,156),(7,157),(8,158),(9,159),(10,160),(11,16),(12,17),(13,18),(14,19),(15,20),(21,33),(22,34),(23,35),(24,31),(25,32),(36,50),(37,46),(38,47),(39,48),(40,49),(41,53),(42,54),(43,55),(44,51),(45,52),(56,70),(57,66),(58,67),(59,68),(60,69),(61,73),(62,74),(63,75),(64,71),(65,72),(76,90),(77,86),(78,87),(79,88),(80,89),(81,93),(82,94),(83,95),(84,91),(85,92),(96,110),(97,106),(98,107),(99,108),(100,109),(101,113),(102,114),(103,115),(104,111),(105,112),(116,130),(117,126),(118,127),(119,128),(120,129),(121,133),(122,134),(123,135),(124,131),(125,132),(136,150),(137,146),(138,147),(139,148),(140,149),(141,153),(142,154),(143,155),(144,151),(145,152)], [(1,96),(2,97),(3,98),(4,99),(5,100),(6,76),(7,77),(8,78),(9,79),(10,80),(11,83),(12,84),(13,85),(14,81),(15,82),(16,95),(17,91),(18,92),(19,93),(20,94),(21,101),(22,102),(23,103),(24,104),(25,105),(26,106),(27,107),(28,108),(29,109),(30,110),(31,111),(32,112),(33,113),(34,114),(35,115),(36,135),(37,131),(38,132),(39,133),(40,134),(41,128),(42,129),(43,130),(44,126),(45,127),(46,124),(47,125),(48,121),(49,122),(50,123),(51,117),(52,118),(53,119),(54,120),(55,116),(56,143),(57,144),(58,145),(59,141),(60,142),(61,139),(62,140),(63,136),(64,137),(65,138),(66,151),(67,152),(68,153),(69,154),(70,155),(71,146),(72,147),(73,148),(74,149),(75,150),(86,157),(87,158),(88,159),(89,160),(90,156)], [(1,115,35,96),(2,111,31,97),(3,112,32,98),(4,113,33,99),(5,114,34,100),(6,90,16,83),(7,86,17,84),(8,87,18,85),(9,88,19,81),(10,89,20,82),(11,95,156,76),(12,91,157,77),(13,92,158,78),(14,93,159,79),(15,94,160,80),(21,108,28,101),(22,109,29,102),(23,110,30,103),(24,106,26,104),(25,107,27,105),(36,135,55,116),(37,131,51,117),(38,132,52,118),(39,133,53,119),(40,134,54,120),(41,128,48,121),(42,129,49,122),(43,130,50,123),(44,126,46,124),(45,127,47,125),(56,155,75,136),(57,151,71,137),(58,152,72,138),(59,153,73,139),(60,154,74,140),(61,148,68,141),(62,149,69,142),(63,150,70,143),(64,146,66,144),(65,147,67,145)], [(1,75,35,56),(2,71,31,57),(3,72,32,58),(4,73,33,59),(5,74,34,60),(6,123,16,130),(7,124,17,126),(8,125,18,127),(9,121,19,128),(10,122,20,129),(11,116,156,135),(12,117,157,131),(13,118,158,132),(14,119,159,133),(15,120,160,134),(21,68,28,61),(22,69,29,62),(23,70,30,63),(24,66,26,64),(25,67,27,65),(36,95,55,76),(37,91,51,77),(38,92,52,78),(39,93,53,79),(40,94,54,80),(41,88,48,81),(42,89,49,82),(43,90,50,83),(44,86,46,84),(45,87,47,85),(96,136,115,155),(97,137,111,151),(98,138,112,152),(99,139,113,153),(100,140,114,154),(101,141,108,148),(102,142,109,149),(103,143,110,150),(104,144,106,146),(105,145,107,147)]])

110 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E···4N5A5B5C5D10A···10L10M···10T10U···10AB20A···20P20Q···20BD
order1222222244444···4555510···1010···1010···1020···2020···20
size1111224422224···411111···12···24···42···24···4

110 irreducible representations

dim11111111111111112244
type+++++++++-
imageC1C2C2C2C2C2C2C2C5C10C10C10C10C10C10C10D4C5×D42- 1+4C5×2- 1+4
kernelC5×C23.38C23C5×C42⋊C2C5×C22⋊Q8C5×C22.D4C5×C4.4D4C5×C4⋊Q8Q8×C2×C10C10×C4○D4C23.38C23C42⋊C2C22⋊Q8C22.D4C4.4D4C4⋊Q8C22×Q8C2×C4○D4C2×C20C2×C4C10C2
# reps11442211441616884441628

Matrix representation of C5×C23.38C23 in GL6(𝔽41)

100000
010000
0018000
0001800
0000180
0000018
,
4000000
0400000
000100
001000
000001
000010
,
100000
010000
0040000
0004000
0000400
0000040
,
4000000
0400000
0040000
0004000
0000400
0000040
,
4000000
110000
0001101
00300400
0001030
00400110
,
4000000
0400000
0001101
0011010
0001030
0010300
,
40390000
010000
000010
000001
0040000
0004000

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,1,0,0,0,0,0,1,0,0,0,0,0,0,0,30,0,40,0,0,11,0,1,0,0,0,0,40,0,11,0,0,1,0,30,0],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,11,0,1,0,0,11,0,1,0,0,0,0,1,0,30,0,0,1,0,30,0],[40,0,0,0,0,0,39,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,1,0,0,0,0,0,0,1,0,0] >;

C5×C23.38C23 in GAP, Magma, Sage, TeX

C_5\times C_2^3._{38}C_2^3
% in TeX

G:=Group("C5xC2^3.38C2^3");
// GroupNames label

G:=SmallGroup(320,1538);
// by ID

G=gap.SmallGroup(320,1538);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,568,3446,891,436,2467]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^5=b^2=c^2=d^2=e^2=1,f^2=g^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*b*e=b*c=c*b,b*d=d*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,g*f*g^-1=c*f=f*c,c*g=g*c,g*e*g^-1=d*e=e*d,d*f=f*d,d*g=g*d>;
// generators/relations

׿
×
𝔽